FGF-, BMP- and Shh-mediated signalling pathways in the regulation of cranial suture morphogenesis and calvarial bone development.

نویسندگان

  • H J Kim
  • D P Rice
  • P J Kettunen
  • I Thesleff
چکیده

The development of calvarial bones is tightly co-ordinated with the growth of the brain and needs harmonious interactions between different tissues within the calvarial sutures. Premature fusion of cranial sutures, known as craniosynostosis, presumably involves disturbance of these interactions. Mutations in the homeobox gene Msx2 as well as the FGF receptors cause human craniosynostosis syndromes. Our histological analysis of mouse calvarial development demonstrated morphological differences in the sagittal suture between embryonic and postnatal stages. In vitro culture of mouse calvaria showed that embryonic, but not postnatal, dura mater regulated suture patency. We next analysed by in situ hybridisation the expression of several genes, which are known to act in conserved signalling pathways, in the sagittal suture during embryonic (E15-E18) and postnatal stages (P1-P6). Msx1 and Msx2 were expressed in the sutural mesenchyme and the dura mater. FGFR2(BEK), as well as Bmp2 and Bmp4, were intensely expressed in the osteogenic fronts and Bmp4 also in the mesenchyme of the sagittal suture and in the dura mater. Fgf9 was expressed throughout the calvarial mesenchyme, the dura mater, the developing bones and the overlying skin, but Fgf4 was not detected in these tissues. Interestingly, Shh and Ptc started to be expressed in patched pattern along the osteogenic fronts at the end of embryonic development and, at this time, the expression of Bmp4 and sequentially those of Msx2 and Bmp2 were reduced, and they also acquired patched expression patterns. The expression of Msx2 in the dura mater disappeared after birth. FGF and BMP signalling pathways were further examined in vitro, in E15 mouse calvarial explants. Interestingly, beads soaked in FGF4 accelerated sutural closure when placed on the osteogenic fronts, but had no such effect when placed on the mid-sutural mesenchyme. BMP4 beads caused an increase in tissue volume both when placed on the osteogenic fronts and on the mid-sutural area, but did not effect suture closure. BMP4 induced the expression of both Msx1 and Msx2 genes in sutural tissue, while FGF4 induced only Msx1. We suggest that the local application of FGF on the osteogenic fronts accelerating suture closure in vitro, mimics the pathogenesis of human craniosynostosis syndromes in which mutations in the FGF receptor genes apparently cause constitutive activation of the receptors. Taken together, our data suggest that conserved signalling pathways regulate tissue interactions during suture morphogenesis and intramembranous bone formation of the calvaria and that morphogenesis of mouse sagittal suture is controlled by different molecular mechanisms during the embryonic and postnatal stages. Signals from the dura mater may regulate the maintenance of sutural patency prenatally, whereas signals in the osteogenic fronts dominate after birth.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A review of hedgehog signaling in cranial bone development

During craniofacial development, the Hedgehog (HH) signaling pathway is essential for mesodermal tissue patterning and differentiation. The HH family consists of three protein ligands: Sonic Hedgehog (SHH), Indian Hedgehog (IHH), and Desert Hedgehog (DHH), of which two are expressed in the craniofacial complex (IHH and SHH). Dysregulations in HH signaling are well documented to result in a wide...

متن کامل

Regulation of human cranial osteoblast phenotype by FGF-2, FGFR-2 and BMP-2 signaling.

The formation of cranial bone requires the differentiation of osteoblasts from undifferentiated mesenchymal cells. The balance between osteoblast recruitment, proliferation, differentiation and apoptosis in sutures between cranial bones is essential for calvarial bone formation. The mechanisms that control human osteoblasts during normal calvarial bone formation and premature suture ossificatio...

متن کامل

Molecular Regulation of Craniofacial Bone and Palate Development

The development of cranial bones and palate are complex processes where the development of multiple elements needs to be coordinated spatiotemporally to produce a working unit such as calvarium, cranial base, or palate. I have shown here that a common theme in the early development of craniofacial structures is balancing the level of proliferation and differentiation of progenitor cell populati...

متن کامل

Shh, Bmp-2, Bmp-4 and Fgf-8 are associated with initiation and patterning of mouse tongue papillae

Spacing patterns are of fundamental importance in various repeated structures which develop at regular intervals such as feathers, teeth and insect ommatidia. The mouse tongue develops a regular papilla pattern and provides a good model to study pattern formation. We examined the expression patterns of the signalling molecules, sonic hedgehog (Shh), bone morphogenetic proteins -2 and -4 (Bmp-2 ...

متن کامل

Integration of FGF and TWIST in calvarial bone and suture development.

Mutations in the FGFR1-FGFR3 and TWIST genes are known to cause craniosynostosis, the former by constitutive activation and the latter by haploinsufficiency. Although clinically achieving the same end result, the premature fusion of the calvarial bones, it is not known whether these genes lie in the same or independent pathways during calvarial bone development and later in suture closure. We h...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development

دوره 125 7  شماره 

صفحات  -

تاریخ انتشار 1998